Flowrite™ EA 599 Series

SKD Electronic Valve Actuator

24 Vac Proportional Control

Description

The Flowrite EA 599 Series SKD Electronic Valve Actuator requires a 24 Vac supply and receives a 0 to 10 Vdc or a 4 to 20 mA control signal to proportionally control a valve. This actuator is designed to work with Flowrite VF 599 Series valve and Siemens Building Technologies, Inc. standard valves with a 3/4-inch (20 mm) stroke.

Features

- Direct-coupled installation requires no special tools or adjustments
- Visual and electronic stroke indication
- Die-cast aluminum housing
- Manual override
- Spring return to fail safe position
- Automatic stroke calibration
- Maintenance-free

Application

These electronic actuators are designed to be used with Flowrite VF 599 Series valves and Siemens Building Technologies’ standard valves with a 3/4-inch (20 mm) stroke in liquid service and steam service applications.

Product Number

SKD62U (Actuator Prefix Code 274)
Warning/Caution Notations

<table>
<thead>
<tr>
<th>WARNING</th>
<th>Personal injury/loss of life may occur if a procedure is not performed as specified.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>Equipment damage, or loss of data may occur if the user does not follow procedure as specified.</td>
</tr>
</tbody>
</table>

Specifications

Power supply
- **Operating voltage**: 24 Vac ± 20%
- **Frequency**: 50/60 Hz
- **Power consumption**: 17 VA

Control signals
- **Control input (Y)**
 - **Voltage**: 0 to 10 Vdc or 4 to 20 mA (DIP switch selectable)
 - **Maximum Impedance**: 100K ohms
- **Control input (Z)**
 - **Resistance**: 0 to 1000 ohms
 - **Voltage**: 0 to 1.6V
- **Control output (U)**
 - **Voltage**: 0 to 10 Vdc
 - **Load Impedance**: >500 ohm
 - **Current**: 4 to 20 mA
 - **Load impedance**: < 500 ohms

Function
- **Nominal stroke**: 3/4-inch (20 mm)
- **Run time with control operation (full stroke)**
 - **Power stroke, 0 to 100%; 100% to 0%**: 30 seconds
 - **Spring return stroke, 100 to 0%**: 15 seconds
- **Nominal Force**
 - **NC and 3-way upper**: 0% 225 lbs. (1000 N)
 - **NO and 3-way by-pass**: 100% 258 lbs. (1150 N)

Agency Certification
- **UL approval**: UL873
- **C-UL**: Certified to Canadian standard C22.2 No. 24-93
- **CE conformity per the EMC directive**: 89/336/EEC
- **Low voltage directive**: 73/23/EEC

Ambient conditions
- **Ambient temperature**: 5°F to 122°F (-15°C to 50°C)
- **Media temperature**: 14°F to 284°F (-10°C to 140°C)

Housing
- **NEMA Rating**: NEMA 1 (interior only) See Accessories.

Miscellaneous
- **Dimensions**: See Figure 19
- **Conduit opening**: 1/2-inch NPSM
- **Weight**: 7.5 lbs. (3.4 kg)
Accessories

NOTE: Installation instructions are included with each accessory.

- **ASC1.6 Auxiliary switch.**
 - Sends a signal to indicate the valve is in the 0% stroke position. Switching point is fixed at the 0% stroke position.
 - Switching capacity: 24 Vac
 - Resitive: 4A
 - Inductive: 2A
 - Lowest recommended current: 10 mA

- **599-00417 Packing heating element.**
 - Allows stem to move freely in valves controlling fluids at temperatures below 32°F (0°C). Reduces ice crystal formation on the stem which may damage the packing.
 - Operating Voltage: 24 Vac
 - Heating Output: 20 W

- **FZA21.11 Remote setting unit.**
 - Potentiometer for manual control or remote setting of minimum positions of controlled devices. Suitable for flush panel mounting only.
 - Control Input: 0 to 1000 Ohms

- **599-10071 Weather Shield.**
 - See *Service Kits* for replacement UV resistant cable ties.

Figure 1. Auxiliary Switch.

Figure 2. Packing Heating Element.

Figure 3. Remote Setting Unit.

Figure 4. Weather Shield.
Service Kits

The only field serviceable part is the circuit board.

- Circuit board replacement: 4-668-5748-8
- Plastic wiring compartment cover: 4-104 5634-8
- Manual Override Kit for SKD: 4-268 5504-8
- Ultraviolet (UV) resistant cable ties (pkg. of 10): 538-996

WARNING:

This product contains a spring under high compression. Do not attempt to disassemble the actuator.

SKD Details

Legend

1. Pressure cylinder
2. Piston
3. Oscillating pump
4. Return spring
5. Bypass valve
6. Valve stem retainer
7. Manual override knob
8. Position indicator

Figure 5. SKD Details.
Operation

The actuator accepts a 0 to 10 Vdc or a 4 to 20 mA control signal. The actuator mounted on a valve, produces a stroke proportional to the input signal. When power is turned off or in the event of a power failure, the actuator spring returns the valve to its normal position.

![Figure 6.](image1.png)

![Figure 7.](image2.png)

![Figure 8. Valve Stem Travel Indication.](image3.png)

Mounting and Installation

The vertical position is the recommended position for mounting. Other positions are allowed. When using the Weather Shield for NEMA 3R rating, the vertical position is required. See Weather Shield installation instructions and Figure 9.

Allow four inches (100 mm) around the sides and back of the actuator and eight inches (200 mm) above and to the front of the actuator.

See dimensions in Figure 19.

Detailed installation instructions for field mounting are shipped with the actuator.
Start-up

Check the wiring for proper connections.

NOTE: The valve body assembly determines the complete assembly action.

Stroke Calibration

To determine the stroke positions 0% and 100% in the valve, calibration is required when the valve/actuator are commissioned for the first time.

The actuator must be mechanically connected to a valve and must have a 24 Vac power supply. The calibration procedure can be repeated as often as necessary.

CAUTION:
Before starting calibration, be sure the manual adjuster is set to Automatic to register the actual values.

There is a slot on the printed circuit boards of the actuators. To initiate the calibration procedure, the contacts inside this slot must be short-circuited, for example, with a screwdriver (See Figure 10).

Automatic calibration proceeds as follows (See Figure 11):

- Actuator runs to the 0 stroke position (1), green LED flashes.
- Actuator then runs to the 100 stroke position (2), green LED flashes.
- Measured values are stored in the EPROM.
- The actuator now moves to the position defined by control signal Y or Z (3), and the green LED now glows steadily (normal operation).
- Throughout this procedure, output U is inactive; meaning, the values only represent actual positions when the green LED stops flashing and remains on continuously.

<table>
<thead>
<tr>
<th>LED</th>
<th>Display</th>
<th>Function</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>ON</td>
<td>Normal Operation</td>
<td>Automatic operation</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Stroke calibration In Progress</td>
<td>Wait for calibration to be completed (LED stops flashing)</td>
</tr>
<tr>
<td>Red</td>
<td>ON</td>
<td>Faulty stroke calibration</td>
<td>- Check mounting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Error</td>
<td>- Restart stroke calibration (by short-circuiting calibration slot)</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td>Inner valve jammed</td>
<td>Check the valve</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>No power supply</td>
<td>- Check mains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Faulty electronics</td>
<td>- Replace electronics</td>
</tr>
</tbody>
</table>

Table 1. LED Status.

Figure 10.

Figure 11.
Start-up continued

Override Control

The override control input (Z) has three modes of operation:

<table>
<thead>
<tr>
<th>No Function</th>
<th>Override with 0 ... 1000 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-Contact not Wired</td>
<td>Z-Contact Connected to M Via Resistor R</td>
</tr>
<tr>
<td>Valve Stroke Follows Control Signal Y</td>
<td>Linear or Equal-Percentage Characteristic</td>
</tr>
<tr>
<td>Starting Position at 50</td>
<td>End Position at 900</td>
</tr>
<tr>
<td>Y-Input has No Effect</td>
<td>Y-Input has No Effect</td>
</tr>
</tbody>
</table>

The Z-modes have a "direct acting" factory setting.
Start-up continued

Figure 12. SKD Electronic Features.

<table>
<thead>
<tr>
<th>DIP Switches (Left to right)</th>
<th>1 Selection of Control Signal</th>
<th>2 Selection of Flow Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>4 to 20 mA</td>
<td>Modified*</td>
</tr>
<tr>
<td>OFF Factory Setting</td>
<td>0 to 10 Vdc</td>
<td>Default</td>
</tr>
</tbody>
</table>

*Changing the default setting will modify an equal percentage valve to a linear flow characteristic. When set to default, the flow characteristic is determined by the valve body.
Start-up, continued

The actuator pressure cylinder moves:

<table>
<thead>
<tr>
<th>Normally Closed Valve</th>
<th>Actuator pressure cylinder moves:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Outward (0 to 1): Valve opens.</td>
</tr>
<tr>
<td></td>
<td>• Inward (1 to 0): Valve closes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normally Open Valve</th>
<th>Actuator pressure cylinder moves:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Outward (0 to 1): Valve closes.</td>
</tr>
<tr>
<td></td>
<td>• Inward (1 to 0): Valve opens.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three Way Valve</th>
<th>Actuator pressure cylinder moves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Outward (0 to 1): Valve opens between port NC and C.</td>
</tr>
<tr>
<td></td>
<td>• Inward (1 to 0): Valve opens between ports NO and C.</td>
</tr>
</tbody>
</table>

The measuring voltage at terminal U provides valve stem position feedback to an indicating instrument or building automation system.

Manual Operation

![Figure 13. The Manual Setting Knob in Manual and Automatic Position.](image)

- Turn the manual setting knob clockwise for manual operation.
- A red indicator becomes visible as you begin to crank. Each complete revolution (360°) is equal to 3/32-inch (2.5 mm) stroke.
- If a signal is sent to the actuator while it is in manual operation, the actuator will move but the control will not be accurate.
- The valve cannot be commanded to its 0% position while in manual operation.

Automatic operation

For automatic operation the manual override knob must be in the fully closed position. Turn the manual override knob counterclockwise until the red indicator disappears.
Wiring

Do not use autotransformers. Use earth ground isolating step-down Class 2 power supplies.

Determine supply transformer rating by summing total VA of all actuators used.

The maximum rating for Class 2 step-down transformer is 100 VA.

- Since SKD62U actuator requires ≈20 VA, a maximum of four actuators can be powered by one transformer (80% of transformer VA).
- Operating more than four SKD62U actuators requires additional transformers or separate 100 VA power supplies.
- The position output signal U will switch from 0 to 10 Vdc to 4 to 20 mA when a 4 to 20 mA input signal is selected and used on the Y terminal.

Wiring Diagram

![Wiring Diagram](image)

Figure 14. Connecting Terminals.

<table>
<thead>
<tr>
<th>24 Vac</th>
</tr>
</thead>
<tbody>
<tr>
<td>G System Potential (SP)</td>
</tr>
<tr>
<td>G0 System Neutral (SN)</td>
</tr>
<tr>
<td>Y Control input 0 to 10 Vdc or 4 to 20 mA (DIP switch selectable)</td>
</tr>
<tr>
<td>M Measuring neutral</td>
</tr>
<tr>
<td>U Position indication 0 to 10 Vdc or 4 to 20 mA, See Table 2.</td>
</tr>
<tr>
<td>Z Override control</td>
</tr>
</tbody>
</table>

Table 2.

<table>
<thead>
<tr>
<th>Actuator input signal</th>
<th>Receiving Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low (<500 Ohm)</td>
</tr>
<tr>
<td>0 to 10 Vdc</td>
<td>0 to 20 mA</td>
</tr>
<tr>
<td>4 to 20 mA</td>
<td>4 to 20 mA</td>
</tr>
</tbody>
</table>
Wiring Diagrams, continued

Figure 15. Auxiliary Switch ASC1.6.

Figure 16. Packing Heating Element 599-00417.

Figure 17. Remote Setting Unit FZA21.11.

Troubleshooting
Check that the wires are connected correctly and attached securely.
Check for adequate power supply.
Check that the actuator is set for automatic operation. See the Start-Up section.

Dimensions

Figure 18. Dimensions of 599-10071 Weather Shield in Inches (Millimeters).
Dimensions, Continued

NOTE: The top knockout position should be used when installing the Weather Shield.

Figure 19. Dimensions of SKD Actuator.